
A Gentle Introduction to R

Dr Burak Sonmez

UCL Social Research Institute

02/10/2023

Dr Burak Sonmez (UCL Social Research Institute) A Gentle Introduction to R 02/10/2023 1 / 59

What is R?

R is a widely known open-source software environment for statistical
computing and graphics. Download: https://cran.r-project.org/ for both
Windows and (Mac) OS X
R is more than statistical software; it is essentially a programming language
based on statistical programming language S (1976)
Developed by Ross Ihaka & Robert Gentleman (1995)
R may be a little bit challenging at the beginning because R demands
precision, and carrying out simple tasks may seem to require a lot of effort
Once you get acquainted with R, however, you can handle both basic and
complex tasks with ease

Dr Burak Sonmez (UCL Social Research Institute) A Gentle Introduction to R 02/10/2023 2 / 59

https://cran.r-project.org/

Let’s get started with R Studio

We are going to use R Studio in this workshop. R Studio is free software that
runs R in the background with some brilliant features
It is an integrated development environment (IDE) for R. It includes a
console, syntax-highlighting editor that supports direct code execution, as
well as tools for plotting, history, debugging and workspace management
Go to https://www.rstudio.com/products/rstudio/download/
Select “RSTUDIO-2023.06.2-561.EXE - Windows 10/11 (64-bit)” for
Windows users
Select “RSTUDIO-2023.06.2-561.DMG - macOS 11+ (64-bit)” for Mac users

Dr Burak Sonmez (UCL Social Research Institute) A Gentle Introduction to R 02/10/2023 3 / 59

https://www.rstudio.com/products/rstudio/download/

The RStudio interface

Dr Burak Sonmez (UCL Social Research Institute) A Gentle Introduction to R 02/10/2023 4 / 59

Working with R Script Files

Rather than typing R commands into the console, we typically write short
programs, known as “R scripts” that contain the R commands that we wish
to execute
A file editor tab will open in the source panel. R code can be entered here
You can use File, then Save to give your script a name and save it in your
working directory.

Dr Burak Sonmez (UCL Social Research Institute) A Gentle Introduction to R 02/10/2023 5 / 59

Running R code

When running multiple lines: select all lines, then press ‘Run’ or
cmd/ctrl+enter

Dr Burak Sonmez (UCL Social Research Institute) A Gentle Introduction to R 02/10/2023 6 / 59

R Markdown/Quarto

R Markdown/Quarto produces dynamic output formats in html, pdf, MS
Word, dashboards, Beamer presentations, etc.
We will be learning how to effectively use Quarto for reproducible documents
in week 5

Dr Burak Sonmez (UCL Social Research Institute) A Gentle Introduction to R 02/10/2023 7 / 59

Base R vs R packages
There are “default” packages that come with R. Some of these include:

mean(), median(), max(), min(), and sd()
ls() to see what we have in the environment
setwd() to set your working directory
print() to display the “things” on the console

And there are R packages developed and shared by others. Some R packages
include:

foreign
ggplot2
tidyverse

Dr Burak Sonmez (UCL Social Research Institute) A Gentle Introduction to R 02/10/2023 8 / 59

Installing and loading R packages

You only need to install a package once on your computer. To install an R
package use install.package() function.

install.packages(“tidyverse”)

However, you need to load a package everytime you plan to use it. To load a
package use the library() function.

library(tidyverse)

Dr Burak Sonmez (UCL Social Research Institute) A Gentle Introduction to R 02/10/2023 9 / 59

It’s easy to ask for HELP

You can either use help() function to access R help files or use help section in
the bottom right pane to search

Dr Burak Sonmez (UCL Social Research Institute) A Gentle Introduction to R 02/10/2023 10 / 59

Learning outcomes in this online workshop

Able to:

Read and write lines of R code (even if you do not understand all functions,
you know how to look them up)
Understand what ‘tidy’ data is, how to generate it, and work with it
Open, read, manipulate, analyse, visualise, and save a dataset, using some
packages
Use RStudio, and use it to write an R script and an R markdown document

Dr Burak Sonmez (UCL Social Research Institute) A Gentle Introduction to R 02/10/2023 11 / 59

R basics

R as a calculator

5
[1] 5
5+2
[1] 7
10*3
[1] 30

Dr Burak Sonmez (UCL Social Research Institute) A Gentle Introduction to R 02/10/2023 12 / 59

Assignment
Assignment means creating a variable or more generally, an “object” and
assigning values to it

<- is the assignment operator
good practice to put a space before and after assignment operator!

Create an object and assign value
a <- 10
a
[1] 10
b <- "SOCS0100"
b
[1] "SOCS0100"

print("Next slide please")
[1] "Next slide please"

The console has displayed “Next slide please”. This is in quotation, which
tells R that we are entering a text (string)

Dr Burak Sonmez (UCL Social Research Institute) A Gentle Introduction to R 02/10/2023 13 / 59

Objects

Most statistical software, such as Stata, operates on datasets including rows
of observations and columns of variables
However, R is an “object-oriented” programming language like Python and
JavaScript
You can consider objects as anything you can assign values to (e.g. data,
functions)
Remember, you can also check what objects you have got in the environment
by calling the ls() function

Dr Burak Sonmez (UCL Social Research Institute) A Gentle Introduction to R 02/10/2023 14 / 59

Objects

Objects can be categorised by “type” and by “class”
For instance, a date is an object with a numeric type and a date class
There is no limit to the number of objects R can hold (except RAM memory)

Dr Burak Sonmez (UCL Social Research Institute) A Gentle Introduction to R 02/10/2023 15 / 59

Logicals
A logical is True or False, and can also be written as T or F. Logicals are
mostly used as follows:

== is equal to
!= is not
>= larger than or equal to
< smaller than

my.weight <- 65 #defining your weight as an object
my.weight == 65
[1] TRUE
my.weight != 70
[1] TRUE
my.weight <= 65
[1] TRUE
my.weight > 70
[1] FALSE

Dr Burak Sonmez (UCL Social Research Institute) A Gentle Introduction to R 02/10/2023 16 / 59

Vectors

A vector is a collection of values
The individual values within a vector are called “elements”
Values in a vector can be numeric, character (e.g., “SOCS0100”), or some
other type
For instance, you can use the combine function c() to create a numeric
vector that contains elements (e.g. your modules at UCL and your grades)

courses <- c("S0CS0100", "SOCS0079", "SOCS0081") #create object called
#courses, which is a vector with three elements (characters)
courses # print object
[1] "S0CS0100" "SOCS0079" "SOCS0081"

grades <- c(60, 63, 65) #create object called grades,
#which is a vector with three elements (numbers)
grades # print object
[1] 60 63 65

Dr Burak Sonmez (UCL Social Research Institute) A Gentle Introduction to R 02/10/2023 17 / 59

Practicals (~5 min)

Using either the R console or the R script file, please do the following
exercises:

1 Create a vector called v1 with three elements, where all the elements are
numbers. Then print the values.

2 Create a vector called v2 with four elements, where all the elements are
characters. Then print the values.

3 Create a vector called v3 with five elements, where some elements are
numeric and some elements are characters. Then print the values.

Dr Burak Sonmez (UCL Social Research Institute) A Gentle Introduction to R 02/10/2023 18 / 59

Solutions

v1 <- c(50, 100, 150)

v1
[1] 50 100 150

v2 <- c("s", "o", "c", "i")

v2
[1] "s" "o" "c" "i"

v3 <- c("s", "o", 4, 9, 1)

v3
[1] "s" "o" "4" "9" "1"

1
1The data in a vector must be only one type or mode (numeric, character, or logical) though.

You can’t mix modes in the same vector
Dr Burak Sonmez (UCL Social Research Institute) A Gentle Introduction to R 02/10/2023 19 / 59

Basic data structures

There are two broad types of vectors (Grolemund & Wickham, 2016):

1 Atomic vectors: They are objects that contain elements. They are
homogeneous. In other words, all elements within atomic vector must be of
the same type. There are six types of atomic vectors: logical, integer,
double, character, complex, and raw.

2 Lists: They are also objects that contain elements. Lists can be
heterogeneous though. For example, one element can be an integer and
another element can be character.

These two concepts are not quite intuitive, but they will settle down after a
while.

Dr Burak Sonmez (UCL Social Research Institute) A Gentle Introduction to R 02/10/2023 20 / 59

Length of an vector is the number of elements

You can use length() function to examine vector length

x <- c(10, 14, 18)
x
[1] 10 14 18
length(x)
[1] 3

beatles <- c("Lennon", "McCartney",
"Harrison","Starr")

beatles
[1] "Lennon" "McCartney" "Harrison" "Starr"
length(beatles)
[1] 4

Dr Burak Sonmez (UCL Social Research Institute) A Gentle Introduction to R 02/10/2023 21 / 59

It’s straightforward to identify type of a vector

You can use typeof() function to examine vector type

x
[1] 10 14 18
typeof(x)
[1] "double"

p <- c(0.5, 1.5)
p
[1] 0.5 1.5
typeof(p)
[1] "double"

beatles
[1] "Lennon" "McCartney" "Harrison" "Starr"
typeof(beatles)
[1] "character"

Dr Burak Sonmez (UCL Social Research Institute) A Gentle Introduction to R 02/10/2023 22 / 59

Sequences
A sequence is a set of numbers in ascending or descending order (e.g., 1, 2, 3)
It can be created using the colon operator : with the notation start:end
You can use seq() function to create a series of numbers and assign it to an
object.

s<- 5:10 #same as this: s<- c(5:10)
s
[1] 5 6 7 8 9 10
length(s)
[1] 6

seq(10,15)
[1] 10 11 12 13 14 15
seq(from=10,to=15,by=1)
[1] 10 11 12 13 14 15
seq(from=100,to=150,by=10)
[1] 100 110 120 130 140 150

Dr Burak Sonmez (UCL Social Research Institute) A Gentle Introduction to R 02/10/2023 23 / 59

Vectors can be used in mathematical operations

p <- c(3:10)
p
[1] 3 4 5 6 7 8 9 10

mean(p)
[1] 6.5

p * 2
[1] 6 8 10 12 14 16 18 20

c(2,1,1)+c(1,0,2)
[1] 3 1 3
c(1,1,3)*c(1,0,2)
[1] 1 0 6

Dr Burak Sonmez (UCL Social Research Institute) A Gentle Introduction to R 02/10/2023 24 / 59

Understanding structure of lists using str() function
l <- list(1,2,3)
typeof(l)
[1] "list"
length(l)
[1] 3
str(l)
List of 3
$: num 1
$: num 2
$: num 3

Remember that each element of a list can be a vector of different length

l <- list(c(1,2),c(-1,0,5))
str(l)
List of 2
$: num [1:2] 1 2
$: num [1:3] -1 0 5

Dr Burak Sonmez (UCL Social Research Institute) A Gentle Introduction to R 02/10/2023 25 / 59

Data types can differ across elements within a list

b <- list(5,6,"beatles", TRUE)
typeof(b)
[1] "list"
length(b)
[1] 4
str(b)
List of 4
$: num 5
$: num 6
$: chr "beatles"
$: logi TRUE

Dr Burak Sonmez (UCL Social Research Institute) A Gentle Introduction to R 02/10/2023 26 / 59

Lists can contain other lists

l1 <- list(c(5,6), list("beatles", "radiohead"), list(10, 20, 30))
str(l1)
List of 3
$: num [1:2] 5 6
$:List of 2
..$: chr "beatles"
..$: chr "radiohead"
$:List of 3
..$: num 10
..$: num 20
..$: num 30

Dr Burak Sonmez (UCL Social Research Institute) A Gentle Introduction to R 02/10/2023 27 / 59

You can also name each element in the list
l2 <- list(a=c(5,6), b=list("beatles", "radiohead"),

c=list(10, 20))
str(l2)
List of 3
$ a: num [1:2] 5 6
$ b:List of 2
..$: chr "beatles"
..$: chr "radiohead"
$ c:List of 2
..$: num 10
..$: num 20

You can use names() function to show names of elements in the list

names(l2) # has names
[1] "a" "b" "c"
names(l1) # no names
NULL

Dr Burak Sonmez (UCL Social Research Institute) A Gentle Introduction to R 02/10/2023 28 / 59

Accessing individual elements in a list

-You can use the syntax: list_name$element_name

l2 <- list(a=c(5,6), b=list("beatles", "radiohead"),
c=list(10, 20))

l2$a
[1] 5 6
typeof(l2$a)
[1] "double"
length(l2$a)
[1] 2

typeof(l2$b)
[1] "list"
length(l2$b)
[1] 2

Dr Burak Sonmez (UCL Social Research Institute) A Gentle Introduction to R 02/10/2023 29 / 59

Combining the vectors to a
unidimensional/multidimensional list with c()

Let’s say you have two vectors: candidate and age

candidate <- c("Biden", "Harris", "Trump", "Pence")
age <- c(78, 56, 74, 61)
mean(age)

[1] 67.25

c(candidate,age)
[1] "Biden" "Harris" "Trump" "Pence" "78" "56" "74" "61"
list(candidate,age)
[[1]]
[1] "Biden" "Harris" "Trump" "Pence"
#
[[2]]
[1] 78 56 74 61

Dr Burak Sonmez (UCL Social Research Institute) A Gentle Introduction to R 02/10/2023 30 / 59

Combine the vectors to a twodimensional data frame, with
data.frame()

data.frame(candidate,age)
candidate age
1 Biden 78
2 Harris 56
3 Trump 74
4 Pence 61
df <- data.frame(candidate,age)
summary(df)
candidate age
Length:4 Min. :56.00
Class :character 1st Qu.:59.75
Mode :character Median :67.50
Mean :67.25
3rd Qu.:75.00
Max. :78.00

Dr Burak Sonmez (UCL Social Research Institute) A Gentle Introduction to R 02/10/2023 31 / 59

Factors – a special type of vector, defined by levels

sex <- c("Male","Female","Male","Male")
sex
[1] "Male" "Female" "Male" "Male"
factor(sex)
[1] Male Female Male Male
Levels: Female Male

df <- data.frame(candidate, age,
sex = factor(sex))

df
candidate age sex
1 Biden 78 Male
2 Harris 56 Female
3 Trump 74 Male
4 Pence 61 Male

Dr Burak Sonmez (UCL Social Research Institute) A Gentle Introduction to R 02/10/2023 32 / 59

Dataframes in R (main takeaways)

Data in R are held in objects of different types, dimensions and classes
A data frame is just a list
Each element in data frame must be a vector, not a list
Each element (column) is a variable
The length of an element is the number of observations (rows)
Each element is also named
You may have several different datasets with various types and shapes
contained in the R environment

Dr Burak Sonmez (UCL Social Research Institute) A Gentle Introduction to R 02/10/2023 33 / 59

R built-in datasets

You can use the View() function to display the data frame like a spreadsheet
Please type this on the R Console View(longley)
Remember that you can access individual columns of a data frame by using
the dollar sign $

longley$Year
[1] 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961
[16] 1962
longley$Population
[1] 107.608 108.632 109.773 110.929 112.075 113.270 115.094 116.219 117.388
[10] 118.734 120.445 121.950 123.366 125.368 127.852 130.081

Dr Burak Sonmez (UCL Social Research Institute) A Gentle Introduction to R 02/10/2023 34 / 59

Accessing certain observations (rows) and/or certain
columns (variables)

You can use square brackets to subset data frames, in which the row
coordinate goes first and the column coordinate second.

longley[5,] # brings the 5th row
GNP.deflator GNP Unemployed Armed.Forces Population Year Employed
1951 96.2 328.975 209.9 309.9 112.075 1951 63.221
longley[,6] # brings the 6th column
[1] 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961
[16] 1962
longley[1:2,] # brings the first two rows
GNP.deflator GNP Unemployed Armed.Forces Population Year Employed
1947 83.0 234.289 235.6 159.0 107.608 1947 60.323
1948 88.5 259.426 232.5 145.6 108.632 1948 61.122
longley[1:2, c(5,6)] # brings the 5th & 6th column of 1st two rows
Population Year
1947 107.608 1947
1948 108.632 1948

Dr Burak Sonmez (UCL Social Research Institute) A Gentle Introduction to R 02/10/2023 35 / 59

Missing data

Let’s add a column (variable) to our data:

df$tax_return <- factor(c("Yes","Yes","No",NA))

df$tax_return
[1] Yes Yes No <NA>
Levels: No Yes

na.rm argument asks whether to remove NA values prior to calculation
For most functions, default value is na.rm = FALSE
If you specify, na.rm = TRUE , NA values removed prior to calculation

sum(c(1,2,3,NA))
[1] NA
sum(c(1,2,3,NA), na.rm = TRUE)
[1] 6

Dr Burak Sonmez (UCL Social Research Institute) A Gentle Introduction to R 02/10/2023 36 / 59

Missing data
You must realise that NA is not a level!
NA is a special keyword, not the same as the character string “NA”

df
candidate age sex tax_return
1 Biden 78 Male Yes
2 Harris 56 Female Yes
3 Trump 74 Male No
4 Pence 61 Male <NA>

You can use is.na() function to determine if a value is missing

is.na(df)
candidate age sex tax_return
[1,] FALSE FALSE FALSE FALSE
[2,] FALSE FALSE FALSE FALSE
[3,] FALSE FALSE FALSE FALSE
[4,] FALSE FALSE FALSE TRUE

Dr Burak Sonmez (UCL Social Research Institute) A Gentle Introduction to R 02/10/2023 37 / 59

Programming: if statements
A test/condition is this statement true or false?
If the statement A is true, then do B; if false, then do C (optional)

Dr Burak Sonmez (UCL Social Research Institute) A Gentle Introduction to R 02/10/2023 38 / 59

Conditionals

You can use if(){}else{} function

number <- 10
if(number > 9){
print("Bingo")
} else {
print("Nah")
}
[1] "Bingo"

Dr Burak Sonmez (UCL Social Research Institute) A Gentle Introduction to R 02/10/2023 39 / 59

Programming: functions

We previously use some predefined functions (e.g. mean(), sum(), length())
We can customize functions to serve our special needs
Functions contain multiple instructions that create a cohesive unit:

name <- function(argument_1, argument_2, ...){
commands
return(value)

}

Dr Burak Sonmez (UCL Social Research Institute) A Gentle Introduction to R 02/10/2023 40 / 59

Programming: functions
Let’s remember our created dataset
Arguments, sometimes referred to as parameters, are special variables that
are passed into functions, so that they can be used to perform some tasks

df
candidate age sex tax_return
1 Biden 78 Male Yes
2 Harris 56 Female Yes
3 Trump 74 Male No
4 Pence 61 Male <NA>

find_biden_age <- function(data){
biden_age <- data[data$candidate == "Biden", "age"]
return(biden_age)

}
find_biden_age(df)
[1] 78

Dr Burak Sonmez (UCL Social Research Institute) A Gentle Introduction to R 02/10/2023 41 / 59

Programming: loops

Instructions needs to be applied multiple times
Input is an iterable object (e.g. multiple similar elements)

Dr Burak Sonmez (UCL Social Research Institute) A Gentle Introduction to R 02/10/2023 42 / 59

Programming: loops

for (time in c(1:5)) {
print(c("The course will", "finish", "in", time , "minutes"))
}
[1] "The course will" "finish" "in" "1"
[5] "minutes"
[1] "The course will" "finish" "in" "2"
[5] "minutes"
[1] "The course will" "finish" "in" "3"
[5] "minutes"
[1] "The course will" "finish" "in" "4"
[5] "minutes"
[1] "The course will" "finish" "in" "5"
[5] "minutes"

Dr Burak Sonmez (UCL Social Research Institute) A Gentle Introduction to R 02/10/2023 43 / 59

Importing data

Data come in many different file formats such as .csv, .tab, .dta, .sav, etc.
Today we will load a dataset which is stored in R’s native file format: .RData
rm() function in R is used to delete objects from the memory

rm(list = ls())

Setting the working directory

setwd ("~/Desktop/R_Workshop")

Importing data

load("gss2016.RData")

Dr Burak Sonmez (UCL Social Research Institute) A Gentle Introduction to R 02/10/2023 44 / 59

Importing data

Inspecting the names of the variables and the dimensions of the dataset
(dimension 1 = rows, dimension 2 = columns)

names(gss)
[1] "id" "year" "wtssall" "vpsu" "vstrat" "polviews"
[7] "born" "adults" "hompop" "race" "region" "age"
[13] "sex" "one" "gunlaw" "cappun" "grass" "eqwlth"
[19] "marital" "wrkstat" "income16" "rincom16" "trust" "socommun"
[25] "socrel" "socfrend" "relig" "friend" "degree" "pres12"
[31] "natsci" "confinan" "conbus" "conclerg" "coneduc" "conpress"
[37] "contv" "conjudge" "consci" "conlegis" "conarmy" "spenviro"
[43] "sphlth" "sppolice" "spschool" "sparms" "sparts"
dim(gss)
[1] 2867 47

Dr Burak Sonmez (UCL Social Research Institute) A Gentle Introduction to R 02/10/2023 45 / 59

Subsetting Data Frames with [] and $
Show all obs where respondents’ sex is male (1) (1276) and all columns
(variables)

male <- gss[gss$sex == 1,]
dim(male)
[1] 1276 47

Show all obs where respondents’ sex is female (2) (1591) and the first three
columns (first 3 variables)
Show all obs where respondents’ sex is “female” (2) and race is “black” (2)
(283)

female <- gss[gss$sex == 2, 1:3]
dim(female)
[1] 1591 3
black_female <- gss[gss$sex == 2 & gss$race == 2,]
dim(black_female)
[1] 283 47

Dr Burak Sonmez (UCL Social Research Institute) A Gentle Introduction to R 02/10/2023 46 / 59

Subsetting with Base R function

The subset() is a base R function and easiest way to “filter” observations,
which can be combined with select() another base R function to select
variables

trust_inst <- subset(gss, select=c("confinan","conbus",
"conclerg", "coneduc",

"conpress", "contv", "conjudge", "consci"))
names(trust_inst)
[1] "confinan" "conbus" "conclerg" "coneduc" "conpress" "contv" "conjudge"
[8] "consci"

Dr Burak Sonmez (UCL Social Research Institute) A Gentle Introduction to R 02/10/2023 47 / 59

Introducing tidyverse
Tidyverse has become the most popular way of cleaning and manipulating
data in R
Tidyverse commands can be more efficient with less lines of code

tidyverse base R operation
select() []+ c() OR subset() “extract” variables
filter() []+ $ OR subset() “extract” observations

library(tidyverse)

trust_inst <- select(gss, confinan, conbus, sex, race)
gss_race <- filter(gss, race == 1)

You can also use %in% operator to further filter

gss_filter <- filter(gss, sex == 1, marital %in% 2:4)

Dr Burak Sonmez (UCL Social Research Institute) A Gentle Introduction to R 02/10/2023 48 / 59

Rename variables

rename() function renames variables within a data frame object

rename(obj_name, new_name = old_name,...)

rename(gss, sexual_info = sex)

Dr Burak Sonmez (UCL Social Research Institute) A Gentle Introduction to R 02/10/2023 49 / 59

Creating new variables and renaming with mutate() and
%>%

m <- gss %>% select(age, race, sex) %>% mutate(age_2 = ageˆ2) %>%
rename(ethnicity = race)

head(m, 3)
age ethnicity sex age_2
59600 47 1 1 2209
59601 61 1 1 3721
59602 72 1 1 5184

Dr Burak Sonmez (UCL Social Research Institute) A Gentle Introduction to R 02/10/2023 50 / 59

Simple plots

hist(gss$age)

Histogram of gss$age

gss$age

F
re

qu
en

cy

20 40 60 80

0
50

10
0

15
0

20
0

25
0

30
0

Dr Burak Sonmez (UCL Social Research Institute) A Gentle Introduction to R 02/10/2023 51 / 59

Simple plots

plot(longley$Year, longley$GNP, type="l")

1950 1955 1960

25
0

30
0

35
0

40
0

45
0

50
0

55
0

longley$Year

lo
ng

le
y$

G
N

P

Dr Burak Sonmez (UCL Social Research Institute) A Gentle Introduction to R 02/10/2023 52 / 59

Introducing ggplot2
ggplot2 is to focus on data visualisation as part of the tidyverse
ggplot2 visualises the data in a tidy dataframe. Thus, ggplot expects the
input data to be in a dataframe
There are four main parts of a basic ggplot2 visualisation: the ggplot()
function, the data parameter, the aes()function, and the geom

Dr Burak Sonmez (UCL Social Research Institute) A Gentle Introduction to R 02/10/2023 53 / 59

Introducing ggplot2

You begin every plot by telling the ggplot() function what your data is
When you provide an argument to the data parameter, it will always be a
data.frame object of some type
You will define how the variables in this data logically map onto the plot’s
aesthetics. Mappings are specified using the aes() function
You can combine the argument that define the type of plot you want, which
is called a geom. Each geom has a function that creates it
For example, geom_point() makes scatterplots, geom_bar() makes
barplots, geom_boxplot() makes boxplots

Dr Burak Sonmez (UCL Social Research Institute) A Gentle Introduction to R 02/10/2023 54 / 59

Plotting with ggplot2
library(gapminder)

p <- ggplot(data = gapminder,
mapping = aes(x = gdpPercap, y = lifeExp))

p + geom_point()

40

60

80

0 30000 60000 90000
gdpPercap

lif
eE

xp

Dr Burak Sonmez (UCL Social Research Institute) A Gentle Introduction to R 02/10/2023 55 / 59

Plotting with ggplot2
You can build your plots layer by layer

p <- ggplot(data = gapminder,
mapping = aes(x = gdpPercap,

y=lifeExp))
p + geom_point() + geom_smooth()
`geom_smooth()` using method = 'gam' and formula = 'y ~ s(x, bs = "cs")'

40

60

80

0 30000 60000 90000
gdpPercap

lif
eE

xp

Dr Burak Sonmez (UCL Social Research Institute) A Gentle Introduction to R 02/10/2023 56 / 59

Plotting with ggplot2
Gross Domestic Product per capita is not normally distributed across the
country years. The x-axis scale would probably look better if it were
transformed from a linear scale to a log scale

p <- ggplot(data = gapminder,
mapping = aes(x = gdpPercap,

y=lifeExp))
p + geom_point() + geom_smooth() +

scale_x_log10()
`geom_smooth()` using method = 'gam' and formula = 'y ~ s(x, bs = "cs")'

40

60

80

1e+03 1e+04 1e+05
gdpPercap

lif
eE

xp

Dr Burak Sonmez (UCL Social Research Institute) A Gentle Introduction to R 02/10/2023 57 / 59

Plotting with ggplot2
p <- ggplot(data = gapminder,

mapping = aes(x = gdpPercap,
y = lifeExp))

p + geom_point(color = "orange") +
geom_smooth() +
scale_x_log10()

`geom_smooth()` using method = 'gam' and formula = 'y ~ s(x, bs = "cs")'

40

60

80

1e+03 1e+04 1e+05
gdpPercap

lif
eE

xp

Dr Burak Sonmez (UCL Social Research Institute) A Gentle Introduction to R 02/10/2023 58 / 59

Open sources for R

https://community.rstudio.com/
https://socviz.co/ (DataViz)
https://r4ds.had.co.nz/ (R for Data Science)

Dr Burak Sonmez (UCL Social Research Institute) A Gentle Introduction to R 02/10/2023 59 / 59

https://community.rstudio.com/
https://socviz.co/
https://r4ds.had.co.nz/

